This commit is contained in:
John Terrell 2023-03-15 07:15:26 -07:00
parent 0df29d8284
commit 637d71432c
Signed by untrusted user who does not match committer: johnt
GPG Key ID: 2E424258DD3731F4
20 changed files with 1663 additions and 168 deletions

View File

@ -7,6 +7,86 @@
import RV_ISA::*;
export RV_ISA::*, AluCfg, AluIfc(..), mkAlu;
function Maybe#(Bit#(32)) execute32(RVALUOperator operator, Bit#(32) operand1, Bit#(32) operand2);
let sum = operand1 + operand2;
let difference = operand1 - operand2;
let bitwise_and = operand1 & operand2;
let bitwise_or = operand1 | operand2;
let bitwise_xor = operand1 ^ operand2;
let sltu = (operand1 < operand2 ? 1 : 0);
let slt = (begin
Int#(32) signedOperand1 = unpack(pack(operand1));
Int#(32) signedOperand2 = unpack(pack(operand2));
(signedOperand1 < signedOperand2 ? 1 : 0);
end);
let sll = operand1 << operand2[4:0];
let sra = signedShiftRight(operand1, operand2[4:0]);
let srl = operand1 >> operand2[4:0];
return case(operator)
alu_ADD: tagged Valid sum;
alu_SUB: tagged Valid difference;
alu_AND: tagged Valid bitwise_and;
alu_OR: tagged Valid bitwise_or;
alu_XOR: tagged Valid bitwise_xor;
alu_SLTU: tagged Valid sltu;
alu_SLT: tagged Valid slt;
alu_SLL: tagged Valid sll;
alu_SRA: tagged Valid sra;
alu_SRL: tagged Valid srl;
default: tagged Invalid;
endcase;
endfunction
function Maybe#(Bit#(64)) execute64(RVALUOperator operator, Bit#(64) operand1, Bit#(64) operand2);
let sum = operand1 + operand2;
let difference = operand1 - operand2;
let bitwise_and = operand1 & operand2;
let bitwise_or = operand1 | operand2;
let bitwise_xor = operand1 ^ operand2;
let sltu = (operand1 < operand2 ? 1 : 0);
let slt = (begin
Int#(64) signedOperand1 = unpack(pack(operand1));
Int#(64) signedOperand2 = unpack(pack(operand2));
(signedOperand1 < signedOperand2 ? 1 : 0);
end);
let sll = operand1 << operand2[5:0];
let sra = signedShiftRight(operand1, operand2[5:0]);
let srl = operand1 >> operand2[5:0];
return case(operator)
alu_ADD: tagged Valid sum;
alu_SUB: tagged Valid difference;
alu_AND: tagged Valid bitwise_and;
alu_OR: tagged Valid bitwise_or;
alu_XOR: tagged Valid bitwise_xor;
alu_SLTU: tagged Valid sltu;
alu_SLT: tagged Valid slt;
alu_SLL: tagged Valid sll;
alu_SRA: tagged Valid sra;
alu_SRL: tagged Valid srl;
default: tagged Invalid;
endcase;
endfunction
typeclass Execute#(numeric type xlen);
function Maybe#(Bit#(xlen)) execute(RVALUOperator operator, Bit#(xlen) operand1, Bit#(xlen) operand2);
endtypeclass
instance Execute#(32);
function execute = execute32;
endinstance
instance Execute#(64);
function execute = execute64;
endinstance
instance Execute#(n);
function execute = tagged Invalid;
endinstance
typedef struct {
} AluCfg#(numeric type xlen);
@ -16,59 +96,7 @@ endinterface
module mkAlu#(AluCfg#(xlen) cfg)(AluIfc#(xlen));
method Maybe#(Bit#(xlen)) execute(RVALUOperator operator, Bit#(xlen) operand1, Bit#(xlen) operand2);
let sum = operand1 + operand2;
let difference = operand1 - operand2;
let bitwise_and = operand1 & operand2;
let bitwise_or = operand1 | operand2;
let bitwise_xor = operand1 ^ operand2;
let sltu = (operand1 < operand2 ? 1 : 0);
let slt = (begin
Int#(xlen) signedOperand1 = unpack(pack(operand1));
Int#(xlen) signedOperand2 = unpack(pack(operand2));
(signedOperand1 < signedOperand2 ? 1 : 0);
end);
Maybe#(Bit#(xlen)) result = ?;
if (valueOf(xlen) == 32) begin
let sll = operand1 << operand2[4:0];
let sra = signedShiftRight(operand1, operand2[4:0]);
let srl = operand1 >> operand2[4:0];
result = case(operator)
alu_ADD: tagged Valid sum;
alu_SUB: tagged Valid difference;
alu_AND: tagged Valid bitwise_and;
alu_OR: tagged Valid bitwise_or;
alu_XOR: tagged Valid bitwise_xor;
alu_SLTU: tagged Valid sltu;
alu_SLT: tagged Valid slt;
alu_SLL: tagged Valid sll;
alu_SRA: tagged Valid sra;
alu_SRL: tagged Valid srl;
default: tagged Invalid;
endcase;
end else if (valueOf(xlen) == 64) begin
let sll = operand1 << operand2[5:0];
let sra = signedShiftRight(operand1, operand2[5:0]);
let srl = operand1 >> operand2[5:0];
result = case(operator)
alu_ADD: tagged Valid sum;
alu_SUB: tagged Valid difference;
alu_AND: tagged Valid bitwise_and;
alu_OR: tagged Valid bitwise_or;
alu_XOR: tagged Valid bitwise_xor;
alu_SLTU: tagged Valid sltu;
alu_SLT: tagged Valid slt;
alu_SLL: tagged Valid sll;
alu_SRA: tagged Valid sra;
alu_SRL: tagged Valid srl;
default: tagged Invalid;
endcase;
end
return result;
return execute(operator, operand1, operand2);
// return case(operator)
// alu_ADD: tagged Valid (operand1 + operand2);

396
src/Cpu/CSRs/CsrFile.bsv Normal file
View File

@ -0,0 +1,396 @@
import Cntrs::*;
import GetPut::*;
import ReadOnly::*;
import Trap::*;
import IsaCfg::*;
import MachineInformation::*;
import MachineStatus::*;
import RV_ISA::*;
typedef struct {
Bit#(xlen) value;
Bool denied;
} CsrReadResult#(numeric type xlen) deriving(Bits, Eq, FShow);
typedef struct {
Bool denied;
} CsrWriteResult deriving(Bits, Eq, FShow);
interface CsrReadPort#(numeric type xlen);
method ActionValue#(CsrReadResult#(xlen)) read(RVCsrIndex index);
endinterface
interface CsrWritePort#(numeric type xlen);
method ActionValue#(CsrWriteResult) write(RVCsrIndex index, Bit#(xlen) value);
endinterface
interface CsrWritePermission;
method Bool isWriteable(RVCsrIndex index);
endinterface
interface CsrFile#(numeric type xlen);
method Action incrementCycleCounters;
method Action incrementInstructionsRetiredCounter;
interface CsrReadPort#(xlen) csrReadPort;
interface CsrWritePort#(xlen) csrWritePort;
interface CsrWritePermission csrWritePermission;
interface TrapController#(xlen) trapController;
endinterface
typedef struct {
IsaCfg#(xlen) isa_cfg;
} CsrFileCfg#(numeric type xlen);
module mkCsrFile#(CsrFileCfg#(xlen) cfg)(CsrFile#(xlen));
Reg#(RVPrivilegeLevel) currentPriv <- mkReg(priv_MACHINE);
// Counters
Count#(Bit#(64)) cycleCounter <- mkCount(0);
Count#(Bit#(64)) timeCounter <- mkCount(0);
Count#(Bit#(64)) retiredCounter <- mkCount(0);
// Csrs
// MINFO (mvendorid, marchid, mpimpid, mhardit, mconfigptr)
MachineInformationCfg#(xlen) machineInfoCfg = MachineInformationCfg {
mvendorid: 0,
marchid: 0,
mimpid: 0,
mhartid: 0,
mconfigptr: 0
};
MachineStatusIfc#(xlen) mstatus <- mkMachineStatus(cfg);
/*
ReadOnly#(Bit#(xlen)) mcycle <- mkReadOnly(truncate(cycleCounter));
ReadOnly#(Bit#(xlen)) mtimer <- mkReadOnly(truncate(timeCounter));
ReadOnly#(Bit#(xlen)) minstret <- mkReadOnly(truncate(retiredCounter));
*/
/*
if (valueof(xlen) == 32) begin
ReadOnly#(Bit#(xlen)) mcycleh <- mkReadOnly(truncateLSB(cycleCounter));
ReadOnly#(Bit#(xlen)) mtimeh <- mkReadOnly(truncateLSB(timeCounter));
ReadOnly#(Bit#(xlen)) minstreth <- mkReadOnly(truncateLSB(retiredCounter));
end
*/
Reg#(Bit#(xlen)) mcause <- mkReg(0);
Reg#(Bit#(xlen)) mtvec <- mkReg('hC0DEC0DE);
Reg#(Bit#(xlen)) mepc <- mkReg(0);
Reg#(Bit#(xlen)) mscratch <- mkReg(0);
Reg#(Bit#(xlen)) mip <- mkReg(0);
Reg#(Bit#(xlen)) mie <- mkReg(0);
Reg#(Bit#(xlen)) mtval <- mkReg(0);
Reg#(Bit#(xlen)) mideleg <- mkReg(0);
Reg#(Bit#(xlen)) medeleg <- mkReg(0);
Reg#(Bit#(xlen)) sideleg <- mkReg(0);
Reg#(Bit#(xlen)) sedeleg <- mkReg(0);
function Bool isWARLIgnore(RVCsrIndex index);
Bool result = False;
if ((index >= csr_PMPADDR0 && index <= csr_PMPADDR63) ||
(index >= csr_PMPCFG0 && index <= csr_PMPCFG15) ||
index == csr_SATP ||
index == csr_MIDELEG ||
index == csr_MEDELEG) begin
result = True;
end
return result;
endfunction
function RVCsrIndex getIndex(RVPrivilegeLevel privilege_level, RVCsrIndexOffset offset);
RVCsrIndex index = 0;
index[9:8] = privilege_level[1:0];
index[7:0] = offset;
return index;
endfunction
// Based on fv_new_priv_on_exception from Flute processor.
function RVPrivilegeLevel getTrapPrivilegeLevel(Trap#(xlen) trap);
let trap_privilege_level = priv_MACHINE;
if (currentPriv < priv_MACHINE) begin
if (cfg.s_mode_supported) begin // S mode supported?
// See if this trap should be delegated to SUPERVISOR mode
let delegated = (trap.isInterrupt ?
(mideleg[trap.cause] == 0 ? False : True) :
(medeleg[trap.cause] == 0 ? False : True));
if (delegated) begin
trap_privilege_level = priv_SUPERVISOR;
// If the current priv mode is U, and user mode traps are supported,
// then consult sedeleg/sideleg to determine if delegated to USER mode.
if (currentPriv == priv_USER && cfg.u_level_interrupts_supported) begin
delegated = (trap.isInterrupt ?
(sideleg[trap.cause] == 0 ? False : True) :
(sedeleg[trap.cause] == 0 ? False : True));
if (delegated) begin
trap_privilege_level = priv_USER;
end
end
end
end else begin // S mode *NOT* supported
// If user mode traps are supported, then consult sedeleg/sideleg to determine
// if delegated to USER mode.
if (cfg.u_level_interrupts_supported) begin
let delegated = (trap.isInterrupt ?
(mideleg[trap.cause] == 0 ? False : True) :
(medeleg[trap.cause] == 0 ? False : True));
if (delegated) begin
trap_privilege_level = priv_USER;
end
end
end
end
return trap_privilege_level;
endfunction
//
// readInternal
//
function ActionValue#(CsrReadResult#(xlen)) readInternal(RVCsrIndex index);
actionvalue
let result = CsrReadResult {
value: 0,
denied: False
};
if (!isWARLIgnore(index)) begin
case(index)
// Machine Information Registers (MRO)
/*
csr_MVENDORID: result.value = extend(machineInfoCfg.mvendorid);
*/
csr_MARCHID: result.value = machineInfoCfg.marchid;
csr_MIMPID: result.value = machineInfoCfg.mimpid;
csr_MHARTID: result.value = machineInfoCfg.mhartid;
csr_MISA: result.value = pack(cfg);
csr_MCAUSE: result.value = mcause;
csr_MTVEC: result.value = mtvec;
csr_MEPC: result.value = mepc;
csr_MTVAL: result.value = mtval;
csr_MIDELEG: result.value = mideleg;
csr_MEDELEG: result.value = medeleg;
csr_MSTATUS: begin
let mstatus_ <- mstatus.getMachineStatus.get;
result.value = pack(mstatus_);
end
/*
csr_MCYCLE, csr_CYCLE: begin
result.value = mcycle;
end
*/
csr_MSCRATCH: result.value = mscratch;
csr_MIP: result.value = mip;
csr_MIE: result.value = mie;
// !bugbug - TSELECT is hardcoded to all 1s. This is to keep
// the ISA debug test happy. It *should* report a
// pass if reading TSELECT failed with a trap (to reflect what's in the spec)
// This is a bug in the debug test.
csr_TSELECT: result.value = 'hFFFF_FFFF;
default: begin
result.denied = True;
end
endcase
end
$display("---- Csr Read Index : ", fshow(index));
$display("---- Csr Read Result: ", fshow(result));
return result;
endactionvalue
endfunction
//
// writeInternal
//
function ActionValue#(CsrWriteResult) writeInternal(RVCsrIndex index, Bit#(xlen) value);
actionvalue
let result = CsrWriteResult {
denied: False
};
// Access and write to read-only Csr check.
if (!isWARLIgnore(index)) begin
case(index)
csr_MCAUSE: mcause <= value;
csr_MCYCLE: cycleCounter <= zeroExtend(value);
csr_MEPC: mepc <= value;
csr_MISA: begin
// No-Op
end
csr_MSCRATCH: mscratch <= value;
csr_MSTATUS: mstatus.unpack(value);
csr_MTVAL: mtval <= value;
csr_MTVEC: mtvec <= value;
csr_MIE: mie <= value;
csr_MIP: mip <= value;
csr_TSELECT: begin
// No-Op
end
default: result.denied = True;
endcase
end
$display("---- Csr Write Index : ", fshow(index));
$display("---- Csr Write Value : ", value);
$display("---- Csr Write Result: ", fshow(result));
return result;
endactionvalue
endfunction
function ActionValue#(CsrReadResult#(xlen)) readWithOffset1(RVPrivilegeLevel privilegeLevel, RVCsrIndexOffset offset);
actionvalue
let csrReadResult <- readInternal(getIndex(privilegeLevel, offset));
return csrReadResult;
endactionvalue
endfunction
function ActionValue#(CsrWriteResult) writeWithOffset1(RVPrivilegeLevel privilegeLevel, RVCsrIndexOffset offset, Bit#(xlen) value);
actionvalue
let csrWriteResult <- writeInternal(getIndex(privilegeLevel, offset), value);
return csrWriteResult;
endactionvalue
endfunction
method Action incrementCycleCounters;
cycleCounter.incr(1);
timeCounter.incr(1);
endmethod
method Action incrementInstructionsRetiredCounter;
retiredCounter.incr(1);
endmethod
//
// CsrReadport
//
interface CsrReadPort csrReadPort;
method ActionValue#(CsrReadResult#(xlen)) read(RVCsrIndex index);
let result = CsrReadResult {
value: 0,
denied: True
};
if (currentPriv >= index[9:8]) begin
result <- readInternal(index);
end
return result;
endmethod
endinterface
//
// CsrWritePort
//
interface CsrWritePort csrWritePort;
method ActionValue#(CsrWriteResult) write(RVCsrIndex index, Bit#(xlen) value);
let result = CsrWriteResult {
denied: True
};
if (currentPriv >= index[9:8] && index[11:10] != 'b11) begin
result <- writeInternal(index, value);
end
return result;
endmethod
endinterface
//
// CsrWritePermission
//
interface CsrWritePermission csrWritePermission;
method Bool isWriteable(RVCsrIndex index);
return (currentPriv >= index[9:8] && index[11:10] != 'b11);
endmethod
endinterface
//
// trapController
//
interface TrapController trapController;
method ActionValue#(Bit#(xlen)) beginTrap(Bit#(xlen) trapProgramCounter, Trap#(xlen) trap);
Bit#(xlen) cause = 0;
let trapPrivilegeLevel = getTrapPrivilegeLevel(trap);
/*
cause = zeroExtend(trap.cause);
if (!trap.isInterrupt) begin
cause[valueOf(xlen)-1] = 1;
end
*/
// PC => MEPC
writeWithOffset1(trapPrivilegeLevel, csr_EPC, trapProgramCounter);
// CurPriv => MSTATUS::MPP
let mstatus_ <- mstatus.getMachineStatus.get;
mstatus_.mpp = currentPriv;
// MSTATUS::MIE => MSTATUS::MPIE
mstatus_.mpie = mstatus_.mie;
mstatus_.mie = False; // Disable interrupts
mstatus.putMachineStatus.put(mstatus_);
// cause => CAUSE
writeWithOffset1(trapPrivilegeLevel, csr_CAUSE, cause);
writeWithOffset1(trapPrivilegeLevel, csr_TVAL, trap.tval);
let readResult <- readWithOffset1(trapPrivilegeLevel, csr_TVEC);
Bit#(xlen) vectorTableBase = readResult.value;
let trapHandler = vectorTableBase;
// Check and handle a vectored trap handler table
/*
if (trapHandler[1:0] == 1) begin
trapHandler[1:0] = 0;
if(trap.isInterrupt) begin
trapHandler = trapHandler + extend(4 * trap.cause);
end
end
*/
currentPriv <= trapPrivilegeLevel;
return trapHandler;
endmethod
method ActionValue#(Bit#(xlen)) endTrap;
Bit#(xlen) newProgramCounter = 'hDEADDEAD;
let readStatus <- readWithOffset1(currentPriv, csr_STATUS);
if (readStatus.denied == False) begin
/*
MachineStatus#(xlen) mstatus = unpack(readStatus.value);
let newPrivilegeLevel = mstatus.mpp;
mstatus.mie = mstatus.mpie;
mstatus.mpie = False;
*/
// Attempt to update MSTATUS. The current privilege level may prevent this.
/*
let writeStatus <- writeInternal(csr_MSTATUS, pack(mstatus));
if (writeStatus.denied == False) begin
currentPriv <= newPrivilegeLevel;
readStatus <- readWithOffset1(currentPriv, csr_EPC);
if (readStatus.denied == False) begin
newProgramCounter = readStatus.value;
end
end
*/
end
return newProgramCounter;
endmethod
endinterface
endmodule

View File

@ -0,0 +1,179 @@
import IsaCfg::*;
import GetPut::*;
typedef Bit#(2) MXL;
MXL mxl_32bit = 2'b01;
MXL mxl_64bit = 2'b10;
MXL mxl_128bit = 2'b11;
typedef struct {
Bool extA; // Atomic extension
Bool extB; // Bit manipulation extension
Bool extC; // Compressed instruction extension
Bool extD; // Double precision floating-point extension
Bool extE; // RV32E base ISA
Bool extF; // Single precision floating-point extension
Bool extG; // ** RESERVED **
Bool extH; // Hypervisor extension
Bool extI; // RV32I/64I/128I base ISA
Bool extJ; // Dynamically translated language extension
Bool extK; // ** RESERVED **
Bool extL; // ** RESERVED **
Bool extM; // Integer multiply/divide extension
Bool extN; // User level interrupts extension
Bool extO; // ** RESERVED **
Bool extP; // Packed-SIMD extension
Bool extQ; // Quad precision floating-point extension
Bool extR; // ** RESERVED **
Bool extS; // Supervisor mode implemented
Bool extT; // ** RESERVED **
Bool extU; // User mode implemented
Bool extV; // Vector extension
Bool extW; // ** RESERVED **
Bool extX; // Non-standard extensions present
Bool extY; // ** RESERVED **
Bool extZ; // ** RESERVED **
} MachineISA#(numeric type xlen);
instance DefaultValue#(MachineISA#(xlen));
defaultValue = MachineISA {
extA: False,
extB: False,
extC: False,
extD: False,
extE: False,
extF: False,
extG: False,
extH: False,
extI: True, // RV32I/64I/128I base ISA
extJ: False,
extK: False,
extL: False,
extM: False,
extN: False,
extO: False,
extP: False,
extQ: False,
extR: False,
extS: False,
extT: False,
extU: False,
extV: False,
extW: False,
extX: False,
extY: False,
extZ: False
};
endinstance
instance Bits#(MachineISA#(64), 64);
function Bit#(64) pack(MachineISA#(64) misa);
MXL mxl = mxl_64bit;
return {
mxl,
36'b0,
pack(misa.extZ),
pack(misa.extY),
pack(misa.extX),
pack(misa.extW),
pack(misa.extV),
pack(misa.extU),
pack(misa.extT),
pack(misa.extS),
pack(misa.extR),
pack(misa.extQ),
pack(misa.extP),
pack(misa.extO),
pack(misa.extN),
pack(misa.extM),
pack(misa.extL),
pack(misa.extK),
pack(misa.extJ),
pack(misa.extI),
pack(misa.extH),
pack(misa.extH),
pack(misa.extF),
pack(misa.extE),
pack(misa.extD),
pack(misa.extC),
pack(misa.extB),
pack(misa.extA)
};
endfunction
function MachineISA#(64) unpack(Bit#(64) value);
return defaultValue;
endfunction
endinstance
instance Bits#(MachineISA#(32), 32);
function Bit#(32) pack(MachineISA#(32) misa);
MXL mxl = mxl_32bit;
return {
mxl,
4'b0,
pack(misa.extZ),
pack(misa.extY),
pack(misa.extX),
pack(misa.extW),
pack(misa.extV),
pack(misa.extU),
pack(misa.extT),
pack(misa.extS),
pack(misa.extR),
pack(misa.extQ),
pack(misa.extP),
pack(misa.extO),
pack(misa.extN),
pack(misa.extM),
pack(misa.extL),
pack(misa.extK),
pack(misa.extJ),
pack(misa.extI),
pack(misa.extH),
pack(misa.extH),
pack(misa.extF),
pack(misa.extE),
pack(misa.extD),
pack(misa.extC),
pack(misa.extB),
pack(misa.extA)
};
endfunction
function MachineISA#(32) unpack(Bit#(32) value);
return defaultValue;
endfunction
endinstance
interface MachineISAIfc#(numeric type xlen);
interface Get#(MachineISA#(xlen)) getMachineISA;
interface Put#(MachineISA#(xlen)) putMachineISA;
endinterface
module mkMachineISA#(IsaCfg#(xlen) cfg)(MachineISAIfc#(xlen));
interface Get getMachineISA;
method ActionValue#(MachineISA#(xlen)) get;
MachineISA#(xlen) misa_ = defaultValue;
// Check for user mode support.
if (cfg.u_mode_supported) begin
misa_.extU = True;
end
// Check for supervisor mode support.
if (cfg.s_mode_supported) begin
misa_.extS = True;
end
return misa_;
endmethod
endinterface
interface Put putMachineISA;
method Action put(MachineISA#(xlen) misa);
// Writing to MISA not supported
endmethod
endinterface
endmodule

View File

@ -0,0 +1,9 @@
export MachineInformationCfg(..);
typedef struct {
Bit#(32) mvendorid;
Bit#(xlen) marchid;
Bit#(xlen) mimpid;
Bit#(xlen) mhartid;
Bit#(xlen) mconfigptr;
} MachineInformationCfg#(numeric type xlen);

View File

@ -0,0 +1,180 @@
import GetPut::*;
import IsaCfg::*;
import RV_ISA::*;
typedef Bit#(2) XLENEncoding;
XLENEncoding xlen_32 = 2'b01;
XLENEncoding xlen_64 = 2'b10;
XLENEncoding xlen_128 = 2'b11;
typedef Bit#(2) FSVSState;
FSVSState fsvs_OFF = 2'b00;
FSVSState fsvs_INITIAL = 2'b01;
FSVSState fsvs_CLEAN = 2'b10;
FSVSState fsvs_DIRTY = 2'b11;
typedef Bit#(2) XSState;
XSState xs_ALL_OFF = 2'b00;
XSState xs_NONE_DIRTY_OR_CLEAN = 2'b01;
XSState xs_NONE_DIRTY_SOME_CLEAN = 2'b10;
XSState xs_SOME_DIRTY = 2'b11;
typedef struct {
Bool sie; // Supervisor Interrupt Enable
Bool mie; // Machine Interrupt Enable
Bool spie; // Supervisor Mode Interupts Enabled During Trap
Bool ube; // User Mode Data Accesses are Big Endian
Bool mpie; // Machine Mode Interrupts Enabled During Trap
Bool spp; // Supervisor Previous Privilege Mode
FSVSState vs; // Vector Extension State
RVPrivilegeLevel mpp; // Machine Previous Privilege Level
FSVSState fs; // Floating Point Status
XSState xs; // User Mode Extension Status
Bool mprv; // Modify Privilege Mode For Loads/Stores
Bool sum; // Permit Supervisor User Memory Access
Bool mxr; // Make Executable Pages Readable
Bool tvm; // Trap Virtual Memory Management Accesses
Bool tw; // Timeout-Wait
Bool tsr; // Trap SRET Instruction
XLENEncoding uxl; // User Mode XLEN value (RV64 only)
XLENEncoding sxl; // Supervisor Mode XLEN value (RV64 only)
Bool sbe; // Supervisor Mode Data Accesses are Big Endian
Bool mbe; // Machine Mode Data Accesses are Big Endian
} MachineStatus#(numeric type xlen) deriving(Bits, Eq);
instance DefaultValue#(MachineStatus#(xlen));
defaultValue = MachineStatus {
sie: False,
mie: False,
spie: False,
ube: False,
mpie: False,
spp: False,
vs: fsvs_OFF,
mpp: priv_MACHINE,
fs: fsvs_OFF,
xs: xs_ALL_OFF,
mprv: False,
sum: False,
mxr: False,
tvm: False,
tw: False,
tsr: False,
uxl: xlen_64, // RV64 only
sxl: xlen_64, // RV64 only
sbe: False,
mbe: False
};
endinstance
instance Bits#(MachineStatus#(64), 64);
function Bit#(64) pack(MachineStatus#(64) mstatus);
Bit#(1) sd = ((mstatus.vs | mstatus.fs | mstatus.xs) == 0 ? 0 : 1);
return {
sd,
25'b0,
pack(mstatus.mbe),
pack(mstatus.sbe),
pack(mstatus.sxl),
pack(mstatus.uxl),
9'b0,
pack(mstatus.tsr),
pack(mstatus.tw),
pack(mstatus.tvm),
pack(mstatus.mxr),
pack(mstatus.sum),
pack(mstatus.mprv),
pack(mstatus.xs),
pack(mstatus.fs),
pack(mstatus.mpp),
pack(mstatus.vs),
pack(mstatus.spp),
pack(mstatus.mpie),
pack(mstatus.ube),
pack(mstatus.spie),
1'b0,
pack(mstatus.mie),
1'b0,
pack(mstatus.sie),
1'b0
};
endfunction
function MachineStatus#(64) unpack(Bit#(64) value);
return defaultValue;
endfunction
endinstance
instance Bits#(MachineStatus#(32), 32);
function Bit#(32) pack(MachineStatus#(32) mstatus);
Bit#(1) sd = ((mstatus.vs | mstatus.fs | mstatus.xs) == 0 ? 0 : 1);
return {
sd,
8'b0,
pack(mstatus.tsr),
pack(mstatus.tw),
pack(mstatus.tvm),
pack(mstatus.mxr),
pack(mstatus.sum),
pack(mstatus.mprv),
pack(mstatus.xs),
pack(mstatus.fs),
pack(mstatus.mpp),
pack(mstatus.vs),
pack(mstatus.spp),
pack(mstatus.mpie),
pack(mstatus.ube),
pack(mstatus.spie),
1'b0,
pack(mstatus.mie),
1'b0,
pack(mstatus.sie),
1'b0
};
endfunction
function MachineStatus#(32) unpack(Bit#(32) value);
return defaultValue;
endfunction
endinstance
interface MachineStatusIfc#(numeric type xlen);
interface Get#(MachineStatus#(xlen)) getMachineStatus;
interface Put#(MachineStatus#(xlen)) putMachineStatus;
endinterface
module mkMachineStatus#(IsaCfg#(xlen) cfg)(MachineStatusIfc#(xlen));
Reg#(MachineStatus#(xlen)) mstatus <- mkReg(defaultValue);
interface Get getMachineStatus = toGet(mstatus);
interface Put putMachineStatus;
method Action put(MachineStatus#(xlen) value);
//
// Only MPP, MIE, and MIE are writable. The rest
// are written with defaults
//
MachineStatus#(xlen) mstatus_ = defaultValue;
if (cfg.extS) begin
mstatus_.mpp = value.mpp;
end else begin
// Supervisor mode not supported, ensure only USER and MACHINE
// mode are set in MPP.
RVPrivilegeLevel requestedMPP = value.mpp;
if (requestedMPP == priv_USER || requestedMPP == priv_MACHINE) begin
mstatus_.mpp = requestedMPP;
end
end
mstatus_.mpie = value.mpie;
mstatus_.mie = value.mie;
mstatus <= mstatus_;
endmethod
endinterface
endmodule

View File

@ -0,0 +1,179 @@
import GetPut::*;
import IsaCfg::*;
import RV_ISA::*;
typedef Bit#(2) XLENEncoding;
XLENEncoding xlen_32 = 2'b01;
XLENEncoding xlen_64 = 2'b10;
XLENEncoding xlen_128 = 2'b11;
typedef Bit#(2) FSVSState;
FSVSState fsvs_OFF = 2'b00;
FSVSState fsvs_INITIAL = 2'b01;
FSVSState fsvs_CLEAN = 2'b10;
FSVSState fsvs_DIRTY = 2'b11;
typedef Bit#(2) XSState;
XSState xs_ALL_OFF = 2'b00;
XSState xs_NONE_DIRTY_OR_CLEAN = 2'b01;
XSState xs_NONE_DIRTY_SOME_CLEAN = 2'b10;
XSState xs_SOME_DIRTY = 2'b11;
typedef struct {
Bool sie; // Supervisor Interrupt Enable
Bool mie; // Machine Interrupt Enable
Bool spie; // Supervisor Mode Interupts Enabled During Trap
Bool ube; // User Mode Data Accesses are Big Endian
Bool mpie; // Machine Mode Interrupts Enabled During Trap
Bool spp; // Supervisor Previous Privilege Mode
FSVSState vs; // Vector Extension State
RVPrivilegeLevel mpp; // Machine Previous Privilege Level
FSVSState fs; // Floating Point Status
XSState xs; // User Mode Extension Status
Bool mprv; // Modify Privilege Mode For Loads/Stores
Bool sum; // Permit Supervisor User Memory Access
Bool mxr; // Make Executable Pages Readable
Bool tvm; // Trap Virtual Memory Management Accesses
Bool tw; // Timeout-Wait
Bool tsr; // Trap SRET Instruction
XLENEncoding uxl; // User Mode XLEN value (RV64 only)
XLENEncoding sxl; // Supervisor Mode XLEN value (RV64 only)
Bool sbe; // Supervisor Mode Data Accesses are Big Endian
Bool mbe; // Machine Mode Data Accesses are Big Endian
} MachineStatus;
instance DefaultValue#(MachineStatus);
defaultValue = MachineStatus {
sie: False,
mie: False,
spie: False,
ube: False,
mpie: False,
spp: False,
vs: fsvs_OFF,
mpp: priv_MACHINE,
fs: fsvs_OFF,
xs: xs_ALL_OFF,
mprv: False,
sum: False,
mxr: False,
tvm: False,
tw: False,
tsr: False,
uxl: xlen_64,
sxl: xlen_64,
sbe: False,
mbe: False
};
endinstance
instance Bits#(MachineStatus, 32);
function Bit#(32) pack(MachineStatus mstatus);
Bit#(1) sd = ((mstatus.vs | mstatus.fs | mstatus.xs) == 0 ? 0 : 1);
return {
sd,
8'b0,
pack(mstatus.tsr),
pack(mstatus.tw),
pack(mstatus.tvm),
pack(mstatus.mxr),
pack(mstatus.sum),
pack(mstatus.mprv),
pack(mstatus.xs),
pack(mstatus.fs),
pack(mstatus.mpp),
pack(mstatus.vs),
pack(mstatus.spp),
pack(mstatus.mpie),
pack(mstatus.ube),
pack(mstatus.spie),
1'b0,
pack(mstatus.mie),
1'b0,
pack(mstatus.sie),
1'b0
};
endfunction
function MachineStatus unpack(Bit#(32) value);
return defaultValue;
endfunction
endinstance
instance Bits#(MachineStatus, 64);
function Bit#(64) pack(MachineStatus mstatus);
Bit#(1) sd = ((mstatus.vs | mstatus.fs | mstatus.xs) == 0 ? 0 : 1);
return {
sd,
25'b0,
pack(mstatus.mbe),
pack(mstatus.sbe),
pack(mstatus.sxl),
pack(mstatus.uxl),
9'b0,
pack(mstatus.tsr),
pack(mstatus.tw),
pack(mstatus.tvm),
pack(mstatus.mxr),
pack(mstatus.sum),
pack(mstatus.mprv),
pack(mstatus.xs),
pack(mstatus.fs),
pack(mstatus.mpp),
pack(mstatus.vs),
pack(mstatus.spp),
pack(mstatus.mpie),
pack(mstatus.ube),
pack(mstatus.spie),
1'b0,
pack(mstatus.mie),
1'b0,
pack(mstatus.sie),
1'b0
};
endfunction
function MachineStatus unpack(Bit#(64) value);
return defaultValue;
endfunction
endinstance
interface MachineStatus_Ifc;
interface Get#(MachineStatus) getMachineStatus;
interface Put#(MachineStatus) putMachineStatus;
endinterface
module mkMachineStatus#(IsaCfg#(xlen) cfg)(MachineStatus_Ifc);
Reg#(MachineStatus) mstatus <- mkReg(defaultValue);
interface Get getMachineStatus = toGet(mstatus);
interface Put putMachineStatus;
method Action put(MachineStatus value);
//
// Only MPP, MIE, and MIE are writable.
//
MachineStatus mstatus_ = mstatus;
if (cfg.extS) begin
mstatus_.mpp = value.mpp;
end else begin
// Supervisor mode not supported, ensure only USER and MACHINE
// mode are set in MPP.
RVPrivilegeLevel requestedMPP = value.mpp;
if (requestedMPP == priv_USER || requestedMPP == priv_MACHINE) begin
mstatus_.mpp = requestedMPP;
end
end
mstatus_.mpie = value.mpie;
mstatus_.mie = value.mie;
mstatus <= mstatus_;
endmethod
endinterface
endmodule

17
src/Cpu/Caches.bsv Normal file
View File

@ -0,0 +1,17 @@
typedef struct {
Bit#(xlen) requestAddress;
} ICacheRequest#(numeric type xlen) deriving(Bits);
typedef struct {
// data - data bytes returned from cache
Bit#(TMul#(fetchByteCount,8)) data;
// replay - if true, cache requests replay request.
Bool replay;
// access exception - if true, the request caused an access exception.
Bool accessException;
} ICacheResponse#(numeric type fetchByteCount) deriving(Bits);
typedef struct {
Bit#(xlen) requestAddress;
Bool write;
} DCacheRequest#(numeric type xlen) deriving(Bits);

1
src/Cpu/Common.bsv Normal file
View File

@ -0,0 +1 @@
//!submodule CSRs

View File

@ -1,23 +1,86 @@
import ALU::*;
//!submodule CSRs
import FIFO::*;
import GetPut::*;
import StmtFSM::*;
import Caches::*;
import GprFile::*;
import PipelineRegisters::*;
export CpuCfg(..), CpuIfc, mkCpu;
//
// CpuConfig
//
typedef struct {
} CpuCfg#(numeric type xlen);
Bit#(xlen) initial_program_counter;
} CpuCfg#(numeric type xlen, numeric type icacheFetchByteCount);
//
// CpuIfc
//
interface CpuIfc#(type cfg);
interface CpuIfc#(numeric type xlen, numeric type icacheFetchByteCount);
interface Get#(ICacheRequest#(xlen)) getCacheRequest;
interface Put#(ICacheResponse#(icacheFetchByteCount)) putCacheResponse;
endinterface
//
// State
//
typedef enum {
RESET,
INITIALIZING,
FETCH,
DECODE,
EXECUTE,
MEMORY_ACCESS,
WRITEBACK
} State deriving(Bits, Eq, FShow);
//
// mkCpu()
//
module mkCpu#(CpuCfg#(xlen) cfg)(CpuIfc#(cfg));
AluCfg#(xlen) alu_cfg = AluCfg {};
let alu <- mkAlu(alu_cfg);
endmodule
module mkCpu#(CpuCfg#(xlen, icacheFetchByteCount) cfg)(CpuIfc#(xlen, icacheFetchByteCount));
// Cache FIFOs
FIFO#(ICacheRequest#(xlen)) icacheRequests <- mkFIFO;
FIFO#(ICacheResponse#(icacheFetchByteCount)) icacheResponses <- mkFIFO;
export CpuCfg(..), CpuIfc, mkCpu;
// State
Reg#(State) state <- mkReg(RESET);
// Pipeline registers
Reg#(Bit#(xlen)) pc <- mkReg(cfg.initial_program_counter);
Reg#(IF_ID#(xlen)) if_id <- mkReg(defaultValue);
Reg#(ID_EX#(xlen)) id_ex <- mkReg(defaultValue);
Reg#(EX_MEM#(xlen)) ex_mem <- mkReg(defaultValue);
Reg#(MEM_WB#(xlen)) mem_wb <- mkReg(defaultValue);
Reg#(WB_OUT#(xlen)) wb_out <- mkReg(defaultValue);
// General purpose register (GPR) file
GprFileCfg#(xlen) gpr_cfg = GprFileCfg {};
GprFile#(xlen) gpr <- mkGprFile(gpr_cfg);
//
// INITIALIZATION
//
Reg#(Bit#(10)) gprInitIndex <- mkRegU;
Stmt initializationStatements = (seq
//
// Zero the GPRs
//
for (gprInitIndex <= 0; gprInitIndex <= 32; gprInitIndex <= gprInitIndex + 1)
gpr.gprWritePort.write(truncate(gprInitIndex), 0);
state <= FETCH;
endseq);
FSM initializationMachine <- mkFSMWithPred(initializationStatements, state == INITIALIZING);
rule initialization(state == RESET);
state <= INITIALIZING;
initializationMachine.start;
endrule
interface getCacheRequest = toGet(icacheRequests);
interface putCacheResponse = toPut(icacheResponses);
endmodule

101
src/Cpu/FetchStage.bsv Normal file
View File

@ -0,0 +1,101 @@
import IsaCfg::*;
import MemoryTypes::*;
import PipelineRegisters::*;
import RV_ISA::*;
import Trap::*;
import ClientServer::*;
import FIFOF::*;
import GetPut::*;
import Memory::*;
import RWire::*;
typedef struct {
} FetchStage_Cfg#(numeric type xlen);
interface FetchStage_Ifc#(numeric type xlen);
interface Put#(PC_IF#(xlen)) putPC_IF;
interface Get#(IF_ID#(xlen)) getIF_ID;
interface ReadOnlyMemoryClient#(xlen, 32) memoryClient;
endinterface
module mkFetchStage#(FetchStage_Cfg#(xlen) cfg)(FetchStage_Ifc#(xlen));
Wire#(PC_IF#(xlen)) pc_if <- mkWire;
Wire#(IF_ID#(xlen)) if_id <- mkWire;
// Memory request output
Reg#(Bool) memoryRequestInFlight <- mkReg(False);
Wire#(ReadOnlyMemoryRequest#(xlen)) memoryRequest <- mkWire;
// Memory response input (FIFO)
FIFOF#(ReadOnlyMemoryResponse#(32)) memoryResponses <- mkFIFOF;
function IF_ID#(xlen) processMemoryResponse(ReadOnlyMemoryResponse#(32) response);
IF_ID#(xlen) if_id_ = defaultValue;
if_id_.common.pc = pc_if.common.pc;
if_id_.common.isBubble = False;
if (!response.accessFault) begin
if_id_.common.ir = response.data;
if_id_.common.trap = tagged Invalid;
end else begin
Trap#(xlen) trap = Trap {
cause: exception_INSTRUCTION_ACCESS_FAULT,
isInterrupt: False,
tval: 0
};
if_id_.common.trap = tagged Valid(trap);
end
return if_id_;
endfunction
rule fetch;
IF_ID#(xlen) if_id_ = defaultValue;
if_id_.common.pc = pc_if.common.pc;
if_id_.common.isBubble = True;
if (!pc_if.common.isBubble) begin
// If there's an active request, handle it if it's returned
if (memoryRequestInFlight) begin
if (memoryResponses.notEmpty) begin
if_id_ = processMemoryResponse(memoryResponses.first);
memoryResponses.deq;
memoryRequestInFlight <= False;
end else begin
// Memory request is in flight but hasn't returned yet.
end
end else begin
// No memory request is in flight...
// Check for a misaligned request
if (pc_if.common.pc[1:0] != 0) begin
// Address request was misaligned...
Trap#(xlen) trap = Trap {
cause: exception_INSTRUCTION_ADDRESS_MISALIGNED,
isInterrupt: False,
tval: 0
};
if_id_.common.trap = tagged Valid(trap);
if_id_.common.isBubble = False;
end else begin
// Construct a memory request and send it out.
ReadOnlyMemoryRequest#(xlen) request = ReadOnlyMemoryRequest {
address: pc_if.common.pc
};
memoryRequest <= request;
memoryRequestInFlight <= True;
if_id_.common.isBubble = True;
end
end
end
if_id <= if_id_;
endrule
interface Put putPC_IF = toPut(asIfc(pc_if));
interface Get getIF_ID = toGet(if_id);
interface ReadOnlyMemoryClient memoryClient = toGPClient(memoryRequest, memoryResponses);
endmodule

35
src/Cpu/FetchStage_tb.bsv Normal file
View File

@ -0,0 +1,35 @@
import FetchStage::*;
import IsaCfg::*;
import PipelineRegisters::*;
import Connectable::*;
import GetPut::*;
module mkTopModule(Empty);
// 32 bit
FetchStage_Cfg#(32) fetchStageConfig32 = FetchStage_Cfg{};
FetchStage_Ifc#(32) fetchStage32 <- mkFetchStage(fetchStageConfig32);
Wire#(PC_IF#(32)) pc_if32 <- mkWire;
Wire#(IF_ID#(32)) if_id32 <- mkWire;
mkConnection(toGet(pc_if32), fetchStage32.putPC_IF);
mkConnection(fetchStage32.getIF_ID, toPut(asIfc(if_id32)));
// 64 bit
FetchStage_Cfg#(64) fetchStageConfig64 = FetchStage_Cfg{};
FetchStage_Ifc#(64) fetchStage64 <- mkFetchStage(fetchStageConfig64);
Wire#(PC_IF#(64)) pc_if64 <- mkWire;
Wire#(IF_ID#(64)) if_id64 <- mkWire;
mkConnection(toGet(pc_if64), fetchStage64.putPC_IF);
mkConnection(fetchStage64.getIF_ID, toPut(asIfc(if_id64)));
rule test;
//pc_if32 <= defaultValue;
$display(">>>PASS");
$finish();
endrule
endmodule

47
src/Cpu/GprFile.bsv Normal file
View File

@ -0,0 +1,47 @@
import ClientServer::*;
import GetPut::*;
import Vector::*;
typedef Bit#(5) GprIndex;
interface GprReadPort#(numeric type xlen);
method Bit#(xlen) read(GprIndex index);
endinterface
interface GprWritePort#(numeric type xlen);
method Action write(GprIndex index, Bit#(xlen) value);
endinterface
interface GprFile#(numeric type xlen);
interface GprReadPort#(xlen) gprReadPort1;
interface GprReadPort#(xlen) gprReadPort2;
interface GprWritePort#(xlen) gprWritePort;
endinterface
typedef struct {
} GprFileCfg#(numeric type xlen);
module mkGprFile#(GprFileCfg#(xlen) cfg)(GprFile#(xlen));
Vector#(32, Reg#(Bit#(xlen))) reg_file <- replicateM(mkReg(0));
interface GprReadPort gprReadPort1;
method Bit#(xlen) read(GprIndex index);
return reg_file[index];
endmethod
endinterface
interface GprReadPort gprReadPort2;
method Bit#(xlen) read(GprIndex index);
return reg_file[index];
endmethod
endinterface
interface GprWritePort gprWritePort;
method Action write(GprIndex index, Bit#(xlen) value);
if (index != 0) begin
reg_file[index] <= value;
end
endmethod
endinterface
endmodule

105
src/Cpu/IsaCfg.bsv Normal file
View File

@ -0,0 +1,105 @@
typedef struct {
// userLevelInterruptsSupported - N extension
Bool extN;
// supervisorModeSupported - S extension
Bool extS;
// userModeSupported - U extension
Bool extU;
} IsaCfg#(numeric type xlen);
typedef Bit#(2) MXL;
MXL mxl_32bit = 2'b01;
MXL mxl_64bit = 2'b10;
MXL mxl_128bit = 2'b11;
instance DefaultValue#(IsaCfg#(xlen));
defaultValue = IsaCfg {
extN: False,
extS: False,
extU: False
};
endinstance
// Bits#() instance - serializing to Bit#() creates a MISA register compatible bit pattern.
instance Bits#(IsaCfg#(64), 64);
function Bit#(64) pack(IsaCfg#(64) misa);
MXL mxl = mxl_64bit;
return {
mxl,
36'b0,
1'b0, // pack(misa.extZ),
1'b0, // pack(misa.extY),
1'b0, // pack(misa.extX),
1'b0, // pack(misa.extW),
1'b0, // pack(misa.extV),
pack(misa.extU),
1'b0, // pack(misa.extT),
pack(misa.extS),
1'b0, // pack(misa.extR),
1'b0, // pack(misa.extQ),
1'b0, // pack(misa.extP),
1'b0, // pack(misa.extO),
pack(misa.extN),
1'b0, // pack(misa.extM),
1'b0, // pack(misa.extL),
1'b0, // pack(misa.extK),
1'b0, // pack(misa.extJ),
1'b1, // pack(misa.extI), // Always 1 to indicate RV32I, RV64I, RV128I
1'b0, // pack(misa.extH),
1'b0, // pack(misa.extH),
1'b0, // pack(misa.extF),
1'b0, // pack(misa.extE),
1'b0, // pack(misa.extD),
1'b0, // pack(misa.extC),
1'b0, // pack(misa.extB),
1'b0 // pack(misa.extA)
};
endfunction
function IsaCfg#(64) unpack(Bit#(64) value);
return defaultValue;
endfunction
endinstance
// Bits#() instance - serializing to Bit#() creates a MISA register compatible bit pattern.
instance Bits#(IsaCfg#(32), 32);
function Bit#(32) pack(IsaCfg#(32) misa);
MXL mxl = mxl_32bit;
return {
mxl,
4'b0,
1'b0, // pack(misa.extZ),
1'b0, // pack(misa.extY),
1'b0, // pack(misa.extX),
1'b0, // pack(misa.extW),
1'b0, // pack(misa.extV),
pack(misa.extU),
1'b0, // pack(misa.extT),
pack(misa.extS),
1'b0, // pack(misa.extR),
1'b0, // pack(misa.extQ),
1'b0, // pack(misa.extP),
1'b0, // pack(misa.extO),
pack(misa.extN),
1'b0, // pack(misa.extM),
1'b0, // pack(misa.extL),
1'b0, // pack(misa.extK),
1'b0, // pack(misa.extJ),
1'b1, // pack(misa.extI), // Always 1 to indicate RV32I, RV64I, RV128I
1'b0, // pack(misa.extH),
1'b0, // pack(misa.extH),
1'b0, // pack(misa.extF),
1'b0, // pack(misa.extE),
1'b0, // pack(misa.extD),
1'b0, // pack(misa.extC),
1'b0, // pack(misa.extB),
1'b0 // pack(misa.extA)
};
endfunction
function IsaCfg#(32) unpack(Bit#(32) value);
return defaultValue;
endfunction
endinstance

View File

@ -0,0 +1,129 @@
import Trap::*;
import DefaultValue::*;
//
// PipelineRegisterCommon
//
typedef struct {
Bit#(32) ir;
Bit#(xlen) pc;
Bool isBubble;
Maybe#(Trap#(xlen)) trap;
} PipelineRegisterCommon#(numeric type xlen) deriving(Bits, Eq, FShow);
instance DefaultValue #(PipelineRegisterCommon#(xlen));
defaultValue = PipelineRegisterCommon {
ir: 32'b0000000_00000_00000_000_00000_0110011, // ADD x0, x0, x0
pc: 'hf000c0de,
isBubble: True,
trap: tagged Invalid
};
endinstance
//
// PC_IF
//
typedef struct {
PipelineRegisterCommon#(xlen) common;
} PC_IF#(numeric type xlen) deriving(Bits, Eq, FShow);
instance DefaultValue #(PC_IF#(xlen));
defaultValue = PC_IF {
common: defaultValue
};
endinstance
//
// IF_ID
//
typedef struct {
PipelineRegisterCommon#(xlen) common;
Bit#(1) epoch;
Bit#(xlen) npc; // Next program counter
} IF_ID#(numeric type xlen) deriving(Bits, Eq, FShow);
instance DefaultValue #(IF_ID#(xlen));
defaultValue = IF_ID {
common: defaultValue,
epoch: 0,
npc: 'hbeefbeef
};
endinstance
//
// ID_EX
//
typedef struct {
PipelineRegisterCommon#(xlen) common;
Bit#(1) epoch;
Bit#(xlen) npc; // Next program counter
Bit#(xlen) a; // Operand 1
Bit#(xlen) b; // Operand 2
Bool isBValid; // In the case of a CSR, this will indicate if 'b' is valid
Bit#(xlen) imm; // Sign extended immediate
} ID_EX#(numeric type xlen) deriving(Bits, Eq, FShow);
instance DefaultValue #(ID_EX#(xlen));
defaultValue = ID_EX {
common: defaultValue,
epoch: 0,
npc: 'hbeefbeef,
a: 0,
b: 0,
isBValid: True,
imm: 0
};
endinstance
//
// EX_MEM
//
typedef struct {
PipelineRegisterCommon#(xlen) common;
Bit#(xlen) aluOutput;
Bit#(xlen) storeValueOrCSRWriteback;
Bool cond; // Branch taken?
} EX_MEM#(numeric type xlen) deriving(Bits, Eq, FShow);
instance DefaultValue #(EX_MEM#(xlen));
defaultValue = EX_MEM {
common: defaultValue,
aluOutput: 0,
storeValueOrCSRWriteback: 0,
cond: False
};
endinstance
//
// MEM_WB
//
typedef struct {
PipelineRegisterCommon#(xlen) common;
Bit#(xlen) gprWritebackValue;
Bit#(xlen) csrWritebackValue;
} MEM_WB#(numeric type xlen) deriving(Bits, Eq, FShow);
instance DefaultValue #(MEM_WB#(xlen));
defaultValue = MEM_WB {
common: defaultValue,
gprWritebackValue: 0,
csrWritebackValue: 0
};
endinstance
//
// WB_OUT
//
typedef struct {
PipelineRegisterCommon#(xlen) common;
Bit#(xlen) csr_writeback_value;
Bit#(xlen) gpr_writeback_value;
} WB_OUT#(numeric type xlen) deriving(Bits, Eq, FShow);
instance DefaultValue#(WB_OUT#(xlen));
defaultValue = WB_OUT {
common: defaultValue,
gpr_writeback_value: 0,
csr_writeback_value: 0
};
endinstance

View File

@ -43,105 +43,102 @@ RVBranchOperator branch_BLTU = 3'b110;
RVBranchOperator branch_BGEU = 3'b111;
//
// RVCSRIndex
// RVCsrIndex
//
typedef Bit#(12) RVCSRIndex;
typedef Bit#(12) RVCsrIndex;
// Supervisor Trap Setup
RVCSRIndex csr_SSTATUS = 12'h100; // Supervisor Status Register (SRW)
RVCSRIndex csr_SIE = 12'h104; // Supervisor Interrupt Enable Register (SRW)
RVCSRIndex csr_STVEC = 12'h105; // Supervisor Trap-Handler base address (SRW)
RVCSRIndex csr_SCOUNTEREN = 12'h106; // Supervisor Counter Enable Register (SRW)
RVCsrIndex csr_SSTATUS = 12'h100; // Supervisor Status Register (SRW)
RVCsrIndex csr_SIE = 12'h104; // Supervisor Interrupt Enable Register (SRW)
RVCsrIndex csr_STVEC = 12'h105; // Supervisor Trap-Handler base address (SRW)
RVCsrIndex csr_SCOUNTEREN = 12'h106; // Supervisor Counter Enable Register (SRW)
// Supervisor Configuration
RVCSRIndex csr_SENVCFG = 12'h10A; // Supervisor environment configuration register (SRW)
RVCsrIndex csr_SENVCFG = 12'h10A; // Supervisor environment configuration register (SRW)
// Supervisor Trap Handling
RVCSRIndex csr_SSCRATCH = 12'h140; // Scratch register for supervisor trap handlers (SRW)
RVCSRIndex csr_SEPC = 12'h141; // Supervisor exception program counter (SRW)
RVCSRIndex csr_SCAUSE = 12'h142; // Supervisor trap cause (SRW)
RVCSRIndex csr_STVAL = 12'h143; // Supervisor bad address or instruction (SRW)
RVCSRIndex csr_SIP = 12'h144; // Supervisor interrupt pending (SRW)
RVCsrIndex csr_SSCRATCH = 12'h140; // Scratch register for supervisor trap handlers (SRW)
RVCsrIndex csr_SEPC = 12'h141; // Supervisor exception program counter (SRW)
RVCsrIndex csr_SCAUSE = 12'h142; // Supervisor trap cause (SRW)
RVCsrIndex csr_STVAL = 12'h143; // Supervisor bad address or instruction (SRW)
RVCsrIndex csr_SIP = 12'h144; // Supervisor interrupt pending (SRW)
// Supervisor Protection and Translation
RVCSRIndex csr_SATP = 12'h180; // Supervisor address translation and protection (SRW)
RVCsrIndex csr_SATP = 12'h180; // Supervisor address translation and protection (SRW)
// Machine Trap Setup
RVCSRIndex csr_MSTATUS = 12'h300; // Machine Status Register (MRW)
RVCSRIndex csr_MISA = 12'h301; // Machine ISA and Extensions Register (MRW)
RVCSRIndex csr_MEDELEG = 12'h302; // Machine Exception Delegation Register (MRW)
RVCSRIndex csr_MIDELEG = 12'h303; // Machine Interrupt Delegation Register (MRW)
RVCSRIndex csr_MIE = 12'h304; // Machine Interrupt Enable Register (MRW)
RVCSRIndex csr_MTVEC = 12'h305; // Machine Trap-Handler base address (MRW)
RVCSRIndex csr_MCOUNTEREN = 12'h306; // Machine Counter Enable Register (MRW)
`ifdef RV32
RVCSRIndex csr_MSTATUSH = 12'h310; // Additional machine status register, RV32 only (MRW)
`endif
RVCsrIndex csr_MSTATUS = 12'h300; // Machine Status Register (MRW)
RVCsrIndex csr_MISA = 12'h301; // Machine ISA and Extensions Register (MRW)
RVCsrIndex csr_MEDELEG = 12'h302; // Machine Exception Delegation Register (MRW)
RVCsrIndex csr_MIDELEG = 12'h303; // Machine Interrupt Delegation Register (MRW)
RVCsrIndex csr_MIE = 12'h304; // Machine Interrupt Enable Register (MRW)
RVCsrIndex csr_MTVEC = 12'h305; // Machine Trap-Handler base address (MRW)
RVCsrIndex csr_MCOUNTEREN = 12'h306; // Machine Counter Enable Register (MRW)
RVCsrIndex csr_MSTATUSH = 12'h310; // Additional machine status register, RV32 only (MRW)
// Machine Trap Handling
RVCSRIndex csr_MSCRATCH = 12'h340; // Scratch register for machine trap handlers (MRW)
RVCSRIndex csr_MEPC = 12'h341; // Machine exception program counter (MRW)
RVCSRIndex csr_MCAUSE = 12'h342; // Machine trap cause (MRW)
RVCSRIndex csr_MTVAL = 12'h343; // Machine bad address or instruction (MRW)
RVCSRIndex csr_MIP = 12'h344; // Machine interrupt pending (MRW)
RVCSRIndex csr_MTINST = 12'h34A; // Machine trap instruction (transformed) (MRW)
RVCSRIndex csr_MTVAL2 = 12'h34B; // Machine bad guest physical address (MRW)
RVCsrIndex csr_MSCRATCH = 12'h340; // Scratch register for machine trap handlers (MRW)
RVCsrIndex csr_MEPC = 12'h341; // Machine exception program counter (MRW)
RVCsrIndex csr_MCAUSE = 12'h342; // Machine trap cause (MRW)
RVCsrIndex csr_MTVAL = 12'h343; // Machine bad address or instruction (MRW)
RVCsrIndex csr_MIP = 12'h344; // Machine interrupt pending (MRW)
RVCsrIndex csr_MTINST = 12'h34A; // Machine trap instruction (transformed) (MRW)
RVCsrIndex csr_MTVAL2 = 12'h34B; // Machine bad guest physical address (MRW)
// Machine Memory Protection
RVCSRIndex csr_PMPCFG0 = 12'h3A0; // Physical memory protection configuration (MRW)
RVCSRIndex csr_PMPCFG15 = 12'h3AF;
RVCSRIndex csr_PMPADDR0 = 12'h3B0; // Physical memory protection address register (MRW)
RVCSRIndex csr_PMPADDR63 = 12'h3EF;
RVCsrIndex csr_PMPCFG0 = 12'h3A0; // Physical memory protection configuration (MRW)
RVCsrIndex csr_PMPCFG15 = 12'h3AF;
RVCsrIndex csr_PMPADDR0 = 12'h3B0; // Physical memory protection address register (MRW)
RVCsrIndex csr_PMPADDR63 = 12'h3EF;
// Debug/Trace Registers
RVCSRIndex csr_TSELECT = 12'h7A0; // Debug/Trace trigger register select (MRW)
RVCSRIndex csr_TDATA1 = 12'h7A1; // First Debug/Trace trigger data register (MRW)
RVCSRIndex csr_TDATA2 = 12'h7A2; // Second Debug/Trace trigger data register (MRW)
RVCSRIndex csr_TDATA3 = 12'h7A3; // Third Debug/Trace trigger data register (MRW)
RVCSRIndex csr_MCONTEXT = 12'h7A8; // Machine-mode context register (MRW)
RVCsrIndex csr_TSELECT = 12'h7A0; // Debug/Trace trigger register select (MRW)
RVCsrIndex csr_TDATA1 = 12'h7A1; // First Debug/Trace trigger data register (MRW)
RVCsrIndex csr_TDATA2 = 12'h7A2; // Second Debug/Trace trigger data register (MRW)
RVCsrIndex csr_TDATA3 = 12'h7A3; // Third Debug/Trace trigger data register (MRW)
RVCsrIndex csr_MCONTEXT = 12'h7A8; // Machine-mode context register (MRW)
// Debug Mode Registers
RVCSRIndex csr_DCSR = 12'h7B0; // Debug Control and Status
RVCSRIndex csr_DPC = 12'h7B1; // Debug Program Counter
RVCSRIndex csr_DSCRATCH0 = 12'h7B2; // Debug Scratch Register 0
RVCSRIndex csr_DSCRATCH1 = 12'h7B3; // Debug Scratch Register 1
RVCsrIndex csr_DCSR = 12'h7B0; // Debug Control and Status
RVCsrIndex csr_DPC = 12'h7B1; // Debug Program Counter
RVCsrIndex csr_DSCRATCH0 = 12'h7B2; // Debug Scratch Register 0
RVCsrIndex csr_DSCRATCH1 = 12'h7B3; // Debug Scratch Register 1
// Machine Counters/Timers
RVCSRIndex csr_MCYCLE = 12'hB00; // Cycle counter for RDCYCLE instruction (MRW)
RVCSRIndex csr_MINSTRET = 12'hB02; // Machine instructions-retired counter (MRW)
RVCSRIndex csr_MHPMCOUNTER3 = 12'hB03; // Machine performance-monitoring counter (MRW)
RVCSRIndex csr_MHPMCOUNTER4 = 12'hB04; // Machine performance-monitoring counter (MRW)
RVCSRIndex csr_MHPMCOUNTER5 = 12'hB05; // Machine performance-monitoring counter (MRW)
RVCSRIndex csr_MHPMCOUNTER6 = 12'hB06; // Machine performance-monitoring counter (MRW)
RVCSRIndex csr_MHPMCOUNTER7 = 12'hB07; // Machine performance-monitoring counter (MRW)
RVCSRIndex csr_MHPMCOUNTER8 = 12'hB08; // Machine performance-monitoring counter (MRW)
RVCSRIndex csr_MHPMCOUNTER9 = 12'hB09; // Machine performance-monitoring counter (MRW)
`ifdef RV32
RVCSRIndex csr_MCYCLEH = 12'hB80; // Upper 32 bits of mcycle, RV32I only (MRW)
RVCSRIndex csr_MINSTRETH = 12'hB82; // Upper 32 bits of minstret, RV32I only (MRW)
RVCSRIndex csr_MHPMCOUNTER3H = 12'hB83; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCSRIndex csr_MHPMCOUNTER4H = 12'hB84; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCSRIndex csr_MHPMCOUNTER5H = 12'hB85; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCSRIndex csr_MHPMCOUNTER6H = 12'hB86; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCSRIndex csr_MHPMCOUNTER7H = 12'hB87; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCSRIndex csr_MHPMCOUNTER8H = 12'hB88; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCSRIndex csr_MHPMCOUNTER9H = 12'hB89; // Machine performance-monitoring counter (upper 32 bits) (MRW)
`endif
RVCSRIndex csr_CYCLE = 12'hC00; // Read only mirror of MCYCLE
RVCsrIndex csr_MCYCLE = 12'hB00; // Cycle counter for RDCYCLE instruction (MRW)
RVCsrIndex csr_MINSTRET = 12'hB02; // Machine instructions-retired counter (MRW)
RVCsrIndex csr_MHPMCOUNTER3 = 12'hB03; // Machine performance-monitoring counter (MRW)
RVCsrIndex csr_MHPMCOUNTER4 = 12'hB04; // Machine performance-monitoring counter (MRW)
RVCsrIndex csr_MHPMCOUNTER5 = 12'hB05; // Machine performance-monitoring counter (MRW)
RVCsrIndex csr_MHPMCOUNTER6 = 12'hB06; // Machine performance-monitoring counter (MRW)
RVCsrIndex csr_MHPMCOUNTER7 = 12'hB07; // Machine performance-monitoring counter (MRW)
RVCsrIndex csr_MHPMCOUNTER8 = 12'hB08; // Machine performance-monitoring counter (MRW)
RVCsrIndex csr_MHPMCOUNTER9 = 12'hB09; // Machine performance-monitoring counter (MRW)
RVCsrIndex csr_MCYCLEH = 12'hB80; // Upper 32 bits of mcycle, RV32I only (MRW)
RVCsrIndex csr_MINSTRETH = 12'hB82; // Upper 32 bits of minstret, RV32I only (MRW)
RVCsrIndex csr_MHPMCOUNTER3H = 12'hB83; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCsrIndex csr_MHPMCOUNTER4H = 12'hB84; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCsrIndex csr_MHPMCOUNTER5H = 12'hB85; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCsrIndex csr_MHPMCOUNTER6H = 12'hB86; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCsrIndex csr_MHPMCOUNTER7H = 12'hB87; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCsrIndex csr_MHPMCOUNTER8H = 12'hB88; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCsrIndex csr_MHPMCOUNTER9H = 12'hB89; // Machine performance-monitoring counter (upper 32 bits) (MRW)
RVCsrIndex csr_CYCLE = 12'hC00; // Read only mirror of MCYCLE
// Machine Information Registers
RVCSRIndex csr_MVENDORID = 12'hF11; // Vendor ID (MRO)
RVCSRIndex csr_MARCHID = 12'hF12; // Architecture ID (MRO)
RVCSRIndex csr_MIMPID = 12'hF13; // Implementation ID (MRO)
RVCSRIndex csr_MHARTID = 12'hF14; // Hardware thread ID (MRO)
RVCSRIndex csr_MCONFIGPTR = 12'hF15; // Pointer to configuration data structure (MRO)
RVCsrIndex csr_MVENDORID = 12'hF11; // Vendor ID (MRO)
RVCsrIndex csr_MARCHID = 12'hF12; // Architecture ID (MRO)
RVCsrIndex csr_MIMPID = 12'hF13; // Implementation ID (MRO)
RVCsrIndex csr_MHARTID = 12'hF14; // Hardware thread ID (MRO)
RVCsrIndex csr_MCONFIGPTR = 12'hF15; // Pointer to configuration data structure (MRO)
//
// RVCSRIndexOffset
// RVCsrIndexOffset
//
typedef Bit#(8) RVCSRIndexOffset;
typedef Bit#(8) RVCsrIndexOffset;
// Trap Setup
RVCSRIndexOffset csr_STATUS = 8'h00; // Status
RVCSRIndexOffset csr_EDELEG = 8'h02; // Exception Delegation
RVCSRIndexOffset csr_IDELEG = 8'h03; // Interrupt Delegation
RVCSRIndexOffset csr_IE = 8'h04; // Interrupt Enable
RVCSRIndexOffset csr_TVEC = 8'h05; // Vector Table
RVCSRIndexOffset csr_COUNTEREN = 8'h06; // Counter Enable
RVCsrIndexOffset csr_STATUS = 8'h00; // Status
RVCsrIndexOffset csr_EDELEG = 8'h02; // Exception Delegation
RVCsrIndexOffset csr_IDELEG = 8'h03; // Interrupt Delegation
RVCsrIndexOffset csr_IE = 8'h04; // Interrupt Enable
RVCsrIndexOffset csr_TVEC = 8'h05; // Vector Table
RVCsrIndexOffset csr_COUNTEREN = 8'h06; // Counter Enable
// Trap Handling
RVCSRIndexOffset csr_SCRATCH = 8'h40; // Scratch Register
RVCSRIndexOffset csr_EPC = 8'h41; // Exception Program Counter
RVCSRIndexOffset csr_CAUSE = 8'h42; // Exception/Interrupt Cause
RVCSRIndexOffset csr_TVAL = 8'h43; // Bad address or instruction
RVCSRIndexOffset csr_IP = 8'h44; // Interrupt Pending
RVCsrIndexOffset csr_SCRATCH = 8'h40; // Scratch Register
RVCsrIndexOffset csr_EPC = 8'h41; // Exception Program Counter
RVCsrIndexOffset csr_CAUSE = 8'h42; // Exception/Interrupt Cause
RVCsrIndexOffset csr_TVAL = 8'h43; // Bad address or instruction
RVCsrIndexOffset csr_IP = 8'h44; // Interrupt Pending
//
// RVCSROperator(s)
@ -229,18 +226,12 @@ typedef RVFunc3 RVLoadOperator;
RVLoadOperator load_LB = 3'b000;
RVLoadOperator load_LH = 3'b001;
RVLoadOperator load_LW = 3'b010;
`ifdef RV32
RVLoadOperator load_UNSUPPORTED_011 = 3'b011;
`elsif RV64
RVLoadOperator load_LD = 3'b011;
`endif
RVLoadOperator load_UNSUPPORTED_011 = 3'b011; // RV32
RVLoadOperator load_LD = 3'b011; // RV64
RVLoadOperator load_LBU = 3'b100;
RVLoadOperator load_LHU = 3'b101;
`ifdef RV32
RVLoadOperator load_UNSUPPORTED_110 = 3'b110;
`elsif RV64
RVLoadOperator load_LWU = 3'b110;
`endif
RVLoadOperator load_UNSUPPORTED_110 = 3'b110; // RV32
RVLoadOperator load_LWU = 3'b110; // RV64
RVLoadOperator load_UNSUPPORTED_111 = 3'b111;
//
@ -275,11 +266,8 @@ typedef RVFunc3 RVStoreOperator;
RVStoreOperator store_SB = 3'b000;
RVStoreOperator store_SH = 3'b001;
RVStoreOperator store_SW = 3'b010;
`ifdef RV32
RVStoreOperator store_UNSUPPORTED_011 = 3'b011;
`elsif RV64
RVStoreOperator store_SD = 3'b011;
`endif
RVStoreOperator store_UNSUPPORTED_011 = 3'b011; // RV32
RVStoreOperator store_SD = 3'b011; // RV64
RVStoreOperator store_UNSUPPORTED_100 = 3'b100;
RVStoreOperator store_UNSUPPORTED_101 = 3'b101;
RVStoreOperator store_UNSUPPORTED_110 = 3'b110;

10
src/Cpu/Trap.bsv Normal file
View File

@ -0,0 +1,10 @@
typedef struct {
Bit#(4) cause; // Either exception or interrupt
Bool isInterrupt;
Bit#(xlen) tval;
} Trap#(numeric type xlen) deriving(Bits, Eq, FShow);
interface TrapController#(numeric type xlen);
method ActionValue#(Bit#(xlen)) beginTrap(Bit#(xlen) trap_program_counter, Trap#(xlen) trap);
method ActionValue#(Bit#(xlen)) endTrap;
endinterface

View File

@ -1,18 +1,24 @@
//!submodule Cpu
//!submodule Memory
//!submodule Util
import Soc::*;
//!topmodule mkE001
module mkE001(SocIfc#(32));
SocCfg#(32) cfg = SocCfg {
cpu_cfg: CpuCfg {}
module mkE001(SocIfc#(32, 32));
SocCfg#(32, 32) cfg = SocCfg {
cpu_cfg: CpuCfg {
initial_program_counter: 'h8000_0000
}
};
let soc <- mkSoc(cfg);
endmodule
//!topmodule mkE003
module mkE003(SocIfc#(64));
SocCfg#(64) cfg = SocCfg{
cpu_cfg: CpuCfg {}
module mkE003(SocIfc#(64, 32));
SocCfg#(64, 32) cfg = SocCfg{
cpu_cfg: CpuCfg {
initial_program_counter: 'h8000_0000
}
};
let soc <- mkSoc(cfg);
endmodule

View File

@ -0,0 +1,13 @@
import ClientServer::*;
typedef struct {
Bit#(a) address;
} ReadOnlyMemoryRequest#(numeric type a) deriving(Bits, Eq);
typedef struct {
Bit#(d) data;
Bool accessFault;
} ReadOnlyMemoryResponse#(numeric type d) deriving(Bits, Eq);
typedef Client#(ReadOnlyMemoryRequest#(a), ReadOnlyMemoryResponse#(d))
ReadOnlyMemoryClient#(numeric type a, numeric type d);

View File

@ -5,18 +5,18 @@ export CpuCfg(..), mkSoc, SocCfg(..), SocIfc(..);
// SocConfig
//
typedef struct {
CpuCfg#(xlen) cpu_cfg;
} SocCfg#(numeric type xlen);
CpuCfg#(xlen, ifetchByteCount) cpu_cfg;
} SocCfg#(numeric type xlen, numeric type ifetchByteCount);
//
// SocIfc
//
interface SocIfc#(numeric type xlen);
interface SocIfc#(numeric type xlen, numeric type ifetchByteCount);
endinterface
//
// mkSoc()
//
module mkSoc#(SocCfg#(xlen) cfg)(SocIfc#(xlen));
module mkSoc#(SocCfg#(xlen, ifetchByteCount) cfg)(SocIfc#(xlen, ifetchByteCount));
let cpu <- mkCpu(cfg.cpu_cfg);
endmodule

9
src/Util/ReadOnly.bsv Normal file
View File

@ -0,0 +1,9 @@
module mkReadOnly#(t x)(ReadOnly#(t));
function ReadOnly#(t) readOnlyReg(t r);
return (interface ReadOnly;
method t _read = r;
endinterface);
endfunction
return readOnlyReg(x);
endmodule